Machine Learning/scratch notes: Difference between revisions
From Federal Burro of Information
Jump to navigationJump to search
(Created page with "<pre> ML notes Jupyter Notebook Jump to navigationJump to search jupyter notebook --no-browser --ip 0.0.0.0 --port 5000 jupyter notebook --no-browser --ip 0.0.0.0 --port 5000...") |
No edit summary |
||
Line 202: | Line 202: | ||
</pre> | </pre> | ||
D3 visualizations in jupyter notebooks: | |||
https://medium.com/@stallonejacob/d3-in-juypter-notebook-685d6dca75c8 |
Revision as of 18:17, 20 July 2023
ML notes Jupyter Notebook Jump to navigationJump to search jupyter notebook --no-browser --ip 0.0.0.0 --port 5000 jupyter notebook --no-browser --ip 0.0.0.0 --port 5000 --log-level=DEBUG inline image: possibly this: %matplotlib inline possibly this: from IPython.display import Image To Read https://voila.readthedocs.io/en/stable/index.html Machine Learning Jump to navigationJump to search Contents 1 getting started 2 algorithms 3 tools 4 sample data 5 blogs 6 Cool Projects 7 Data leaks 8 Questions and Investigation 9 Reading Room 9.1 NIPS - Neural Information Processing Systems 10 Demos and Labs 11 Image processing 12 Chapter 13 linear regression in 6 lines of code getting started google://getting started with machine learning https://www.kaggle.com/wiki/GettingStartedWithPythonForDataScience - in progress https://www.quora.com/I-want-to-learn-machine-learning-Where-should-I-start http://thunderboltlabs.com/blog/2013/11/09/getting-started-with-machine-learning/ http://machinelearningmastery.com/machine-learning-for-programmers/ https://www.kaggle.com/dfernig/reddit-comments-may-2015/the-biannual-reddit-sarcasm-hunt/code course: at coursera https://www.coursera.org/learn/machine-learning/home/week/1 understanding machine learning theory algorithms algorithms random forest https://medium.com/rants-on-machine-learning/the-unreasonable-effectiveness-of-random-forests-f33c3ce28883 Nearest Neighbors Classification http://scikit-learn.org/stable/modules/neighbors.html lstm http://blog.echen.me/2017/05/30/exploring-lstms/ tools python + libs Caffe deep learning framework SystemML- a Universal Translator for Big Data and Machine Learning http://www.ibm.com/blogs/think/2015/11/24/introducing-a-universal-translator-for-big-data-and-machine-learning/ https://github.com/SparkTC/systemml/ http://researcher.watson.ibm.com/researcher/view_group.php?id=3174 https://developer.ibm.com/open/systemml/ image labeling https://github.com/Labelbox/Labelbox TensorFlow Playground http://playground.tensorflow.org sample data http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions blogs http://blog.datumbox.com/ Cool Projects https://github.com/aficnar/slackpolice Aerospace Controls Lab http://acl.mit.edu/ https://www.youtube.com/channel/UCVTxuaJsdMrk3UEcHVll9Yg Data leaks When data associated iwth the data set gives away the target data. Primarily of concern in competition. Unexpected data. refrence: https://www.coursera.org/learn/competitive-data-science/lecture/5w9Gy/basic-data-leaks Future peaking - using time series data that's not in the target time period, for example in the future. Meta data leaks - for example file meta data, zip file meta data, image file meta data. information hidden in ID and hashes, and information hidden in row order and possibly duplicate rows Questions and Investigation What are "ground truths"? corteges - what is this word /Courera's Competitive Data Science Course Reading Room an good overview the the data science cycle in a general sense: https://cloud.google.com/ml-engine/docs/tensorflow/data-prep What a Deep Neural Network thinks about your #selfie Detecting tanks https://www.jefftk.com/p/detecting-tanks https://analyticsdefined.com/mining-enron-emails/ https://www.coursera.org/learn/competitive-data-science/lecture/5w9Gy/basic-data-leaks https://opendatascience.com/blog/ Kaggle competitions: https://www.kaggle.com/ University of Toronto Machine Learning http://www.learning.cs.toronto.edu/theses.html Past solutions http://ndres.me/kaggle-past-solutions/ https://www.kaggle.com/wiki/PastSolutions http://www.chioka.in/kaggle-competition-solutions/ https://github.com/ShuaiW/kaggle-classification/ https://towardsdatascience.com/how-to-use-dataset-in-tensorflow-c758ef9e4428 https://towardsdatascience.com/how-to-train-neural-network-faster-with-optimizers-d297730b3713 NIPS - Neural Information Processing Systems 2015 https://nips.cc/Conferences/2015 2016 https://nips.cc/Conferences/2016 Demos and Labs https://codelabs.developers.google.com/codelabs/scd-babyweight2/index.html#0 https://github.com/GoogleCloudPlatform/training-data-analyst Jaz Quick start use your GPU / TPU for ML: https://jax.readthedocs.io/en/latest/notebooks/quickstart.html https://github.com/cbrownley/foundations-for-analytics-with-python Image processing Christopheraburns / gluoncv-yolo-playing_cards https://github.com/Christopheraburns/gluoncv-yolo-playing_cards/blob/master/Yolov3.ipynb Chapter https://github.com/FlorianMuellerklein/Machine-Learning Improving our neural network (96% MNIST) https://databoys.github.io/ImprovingNN/ https://iamtrask.github.io/2015/07/12/basic-python-network/ https://plot.ly/python/create-online-dashboard/ https://www.anaconda.com/download/ http://jupyter.org/install.html https://medium.com/towards-data-science/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464 linear regression in 6 lines of code source: https://towardsdatascience.com/linear-regression-in-6-lines-of-python-5e1d0cd05b8d pip install scikit-learn import numpy as np import matplotlib.pyplot as plt # To visualize import pandas as pd # To read data from sklearn.linear_model import LinearRegression data = pd.read_csv('data.csv') # load data set X = data.iloc[:, 0].values.reshape(-1, 1) # values converts it into a numpy array Y = data.iloc[:, 1].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column linear_regressor = LinearRegression() # create object for the class linear_regressor.fit(X, Y) # perform linear regression Y_pred = linear_regressor.predict(X) # make predictions plt.scatter(X, Y) plt.plot(X, Y_pred, color='red') plt.show() Category: Data Science Navigation menupage actions pagediscussionview sourcehistory personal tools log inrequest account navigation Main page Recent changes Random page search Search Federal Burro of Information tools What links here Related changes Special pages Printable version Permanent link Page information Powered by MediaWiki This page was last edited on 29 February 2020, at 02:59.Privacy policyAbout Federal Burro of InformationDisclaimers
D3 visualizations in jupyter notebooks: https://medium.com/@stallonejacob/d3-in-juypter-notebook-685d6dca75c8